Indian Statistical Institute, Bangalore

B. Math. First Year

Final Exam

Second Semester - Analysis II Duration: 3 hours

Date : April 20, 2016

Max Marks: 50

- (1) State and prove the Bolzano Weierstrass theorem for \mathbb{R}^n (for n > 1). (2+4 = 6 marks)
- (2) Let $n \geq 1$ be an integer. Consider the three metrics on \mathbb{R}^n , the l^1 , l^2 and l^{∞} metrics. Prove that the topologies on \mathbb{R}^n induced by these three metrics are the same. (10 marks)
- (3) True or False (give reasons):
 - (a) \mathbb{Q} (with the standard metric) is connected. (3 marks)
 - (b) Any linear map $f : \mathbb{R}^n \to \mathbb{R}^m$ is uniformly continuous. (3 marks)
 - (c) Any real valued continuous function on a compact metric space has a maximum and a minimum. (3 marks)
 - (d) A continuous map from a compact metric space to any metric space is uniformly continuous. (3 marks)

(4) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = \frac{xy}{\sqrt{x^2+y^2}}$ if $(x,y) \neq (0,0)$, and f(0,0) = 0. Is f continuous at all points of \mathbb{R}^2 ? Is f differentiable at all points of \mathbb{R}^2 ? Does f have directional derivatives at (0,0) in every direction? Justify all your answers. (3+3+4=10 marks)

- (5) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable map. Define $g : \mathbb{R}^n \to \mathbb{R}^{n+m}$ to be the map $g(x_1, \dots, x_n) = (x_1, \dots, x_n, f(x_1, \dots, x_n))$. What is the derivative of g in terms of the derivative of f? Justify your answer. (6 marks)
- (6) Let E ⊂ ℝⁿ be an open subset, and let f : E → ℝ be a real valued function such that all the partial derivatives of f are bounded in E. Prove that f is continuous in E. (6 marks)